Kavli Workshop on Topological Matter and Quantum Computing, May 4-6, 2018, Beijing

New progress in quantum anomalous Hall effect

Qi-Kun Xue

Department of Physics, Tsinghua University

Acknowledgements

Tsinghua: MBE, STM and ARPES

Yunbo Ou, Gaoyuan Jiang, Xiao Feng, Li-Guo Zhang, Li-Li Wang, Wei Li, Can-Li Song, Ding Zhang, Ke He, Xu-Cun Ma

Tsinghua: Transport

Yang Feng, Weixiong Wu, Chang Liu, Shaorui Li, Yaoxin Li, and Yayu Wang

Rutgers: MFM Wenbo Wang, <u>Weida Wu</u>

IOP, CAS: TEM Qinghua Zhang, Xiaozhi Liu, <u>Lin Gu</u>

Quantum Anomalous Hall Effect (QAHE)

 $\rho_{yx}(H=0) = h / ie^2$ $\rho_{xx}(H=0) = 0$

TRS-broken graphene

Haldane, PRL 1988

2D FM system with SOC

Onoda & Nagaosa, PRL 2003

Magnetic topological insulator

SC Zhang et al., since 2006

QAHE in magnetic TIs

2D TI + FM

Qi, Wu & Zhang., PRB 2006 C. -X. Liu et al., PRL 2008

3D TI + FM

Qi, Hughes & Zhang PRB 2008 Yu et al., Science 2010

MBE + STM + ARPES for TI studies

0.0

k_{//} (Å⁻¹)

0.1

-0.1

0.0

0.1

-0.1

0.0

0.1

-0.1

 Bi_2Se_3

0.0

-0.1

0.1

-0.1

0.0

0.1

-0.8

Adv. Mater. 22, 4002 (2010) Nat. Phys. 6, 584 (2010)

QAHE observed in Cr-doped (Bi,Sb)₂Te₃ @ 30 mK

with Li Lv (IOP)

C. –Z. Chang et al., Science 340, 167 (2013)

Confirmation of QAHE

LETTERS

PUBLISHED ONLINE: 17 AUGUST 2014 | DOI: 10.1038/NPHYS3053

Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator

nature

physics

J. G. Checkelsky1*[†], R. Yoshimi¹, A. Tsukazaki², K. S. Takahashi³, Y. Kozuka¹, J. Falson¹, M. Kawasaki^{1,3} and Y. Tokura^{1,3}

2014.08: Tokyo/RIKEM

2014.09: UCLA	PRL 113, 137201 (2014)	PHYSICAL REVIEW LETTERS	week ending 26 SEPTEMBER 2014
	Scale-Invariant Quantum Anomalous Hall Effect in Magnetic Topological Insulators beyond the Two-Dimensional Limit Xufeng Kou, ¹ Shih-Ting Guo, ² Yabin Fan, ¹ Lei Pan, ¹ Murong Lang, ¹ Ying Jiang, ³ Qiming Shao, ¹ Tianxiao Nie, ¹		
pature	Koichi Murata, ¹ Jianshi Ti	ung, ¹ Yong Wang, ³ Liang He, ¹ Ting-Kuo Lee, ² Wei-Li Lee, ^{2*} a	nd Kang L. Wang ^{1,†}
LE I materials PUBLISHED ONLINE: 2 MARCH 2015 [DOI: 10.1033 High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator	2015.	03: MIT	
Cui-Zu Chang ¹ *, Weiwei Zhao ² *, Duk Y. Kim ² , Haijun Zhang ³ , Badih A. Assaf ⁴ , Don Heiman ⁴ , Shou-Cheng Zhang ³ , Chaoxing Liu ² , Moses H. W. Chan ² and Jagadeesh S. Moodera ^{1.5} *	PRL 114, 187201 (2015)	Selected for a Viewpoint in <i>Physics</i> PHYSICAL REVIEW LETTERS	week ending 8 MAY 2015
		ۍ ۳	
2015.05: Stanford	Precise Quantiz A. J. Bestwick, ^{1,2} E. J	ation of the Anomalous Hall Effect near Zero Mag Fox, ^{1,2} Xufeng Kou, ³ Lei Pan, ³ Kang L. Wang, ³ and D. Goldha	; netic Field aber-Gordon ^{1,2,*}
QUANTUM MECHANICS	2016 ©		
Large discrete jumps observed in the transition	exclusive the Advi under a		
between Chern states in a ferromagnetic	NonCon 10.1126/		
topological insulator	2016.06: Princeton		
Minhao Liu, ¹ Wudi Wang, ¹ Anthony R. Richardella, ² Abhinav Kandala, ² Jian Li, ¹ Ali Y Nitin Samarth, ² N. Phuan Ong ¹ *	azdani, ¹		
PI	RL 118, 246801 (2017)	PHYSICAL REVIEW LETTERS	week ending 16 JUNE 2017
2017.06: Wurzburg	Scaling of the Quantu	n Anomalous Hall Effect as an Indicator of Axion	Electrodynamics

Nobel Lecture by F. D. M. Haldane

REVIEWS OF MODERN PHYSICS, VOLUME 89, OCTOBER-DECEMBER 2017

Nobel Lecture: Topological quantum matter^{*}

F. Duncan M. Haldane

Department of Physics, Princeton University, Princeton, New Jersey 08544-0708, USA

(published 9 October 2017)

Nobel Lecture, presented December 8, 2016, Aula Magna, Stockholm University. I will describe the history and background of three discoveries cited in this Nobel Prize: The "TKNN" topological formula for the integer quantum Hall effect found by David Thouless and collaborators, the Chern insulator or quantum anomalous Hall effect, and its role in the later discovery of time-reversal-invariant topological insulators, and the unexpected topological spin-liquid state of the spin-1 quantum antiferromagnetic chain, which provided an initial example of topological quantum matter. I will summarize how these early beginnings have led to the exciting, and currently extremely active, field of "topological matter."

DOI: 10.1103/RevModPhys.89.040502

QAHE is among the most important physics effects discovered in topological insulators. discovery of the 3D time-reversal-invariant topological insulators (TI). This finally led to the reported experimental realization (Chang *et al.*, 2013) by QiKun Xue's group at Tsinghua University, Beijing, of the quantum anomalous Hall effect in thin films of TRI TI's which had been doped with magnetic material.

I now turn to the other (1981) discovery recognized by this Nobel prize: the novel quantum spin-liquid states of the one-

Recent progresses in QAHE

- Higher temperature: Cr+V co-doped (Bi,Sb)₂Te₃
- Other novel topological states of matter

"Penta-layer" Cr-doped (Bi,Sb)₂Te₃

Y. Tokura: APL 107, 182401 (2015)

Good quantization at 0.5 K and zero field

Quantized Anomalous Hall Effect in V-Sb₂Te₃

nature materials

LETTERS

PUBLISHED ONLINE: 2 MARCH 2015 | DOI: 10.1038/NMAT4204

High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator

MIT/PSU/Stanford

Cui-Zu Chang^{1*}, Weiwei Zhao^{2*}, Duk Y. Kim², Haijun Zhang³, Badih A. Assaf⁴, Don Heiman⁴, Shou-Cheng Zhang³, Chaoxing Liu², Moses H. W. Chan² and Jagadeesh S. Moodera^{1,5*}

1.5 1.0 $\rho_{\rm xx'}\rho_{\rm yx}(h/{\rm e}^2)$ 0.5 ρ_{xx} 0.0 -0.5 $T = 25 \, \text{mK}$ $V_{a} = V_{a}^{0}$ $\rho_{\rm vx}$ -1.0 -1 0 1 2 -2 $\mu_0 H$ (T)

V-doped Sb₂Te₃ (~4%)

Dr. Chang and Prof. Moodera (MIT)

Higher QAHE temperature in Cr & V co-doped (Bi,Sb)₂Te₃ films

5 QL (Cr_yV_{1-y})_{0.19}(Bi_xSb_{1-x})_{1.81}Te₃

0.97 *h*/*e*² @ 1.5 K

Y. Ou et al., Adv. Mater. (2018)

Y. Ou et al., Adv. Mater. (2018)

Temperature dependence

Activation gap ~ 1.4 K

Y. Ou et al., Adv. Mater. (2018)

Why co-doped samples do better?

More mean-field-like $ho_{\rm AH}$ -T curve

Improved FM order

Direct evidence by magnetic force microscopy

Weida Wu, Rutgers Nat. Phys. (in press)

Cr+V co-doped

V-doped

Cr-doped

"Spin valve" based on QAH edge states in Cr+V co-doped (Bi,Sb)₂Te₃ films

X. -L. Qi, T. L. Hughes & S. -C. Zhang, PRB 78, 195424 (2008)

"Spin valve" for QAH edge states

CVBST (Cr/V: 0.16/0.84—larger coercivity) BST (non-magnetic) CVBST (Cr/V: 0.4/0.6—smaller coercivity)

- When the magnetization directions of the top and bottom layers are parallel, QAH ($\rho_{xx}=0$, $\rho_{xy}=h/e^2$).
- Its longitudinal resistance becomes very large ($\rho_{xx} > 20 \text{ h/e}^2$) when anti-parallel.

Spin valve

"Spin valve" for QAH edge states

Persistent up to 300 mK

At zero plateau, when we switch off the magnetic field, the system stays at Axion insulator state (stable).

Helical edge states = a pair of counter-propagating QAH chiral edge states

Qi, Wu & Zhang., PRB 2006

- When two QAH sub-systems have the same magnetization direction (strong field), the system become a QAH insulator with Chern number 2.
- In the case of opposite magnetization, it becomes a QSH system.

The synthetic QSH system could be useful

However, the two QAH systems are separated too much: the space is > coherent length

Knez, Du, Sullivan, Phys. Rev. Lett. 109, 186603 (2012)

Normal insulator spacing layer

CdSe

TI-CdSe Band alignment

Bandgap: ~1.74 eV

G. Jiang et al., (unpublished)

Type-I QW structure

Superlattice of CVBST and CdSe

 2θ (deg.)

G. Jiang et al., (unpublished)

QAH multilayers

With increasing space layer number (N), the Hall resistance follows h/Ne^2 .

Effective high Chern number QAHE

The two-terminal resistance decreases with increasing N

QAH multilayers: magnetic Weyl semimetals

- Δ_{D} : Hybridization between the SSs of two MTI layers
- Δ_{S} : Hybridization between the SSs of a MTI layer

Burkov & Balents, PRL 107, 127205 (2011)

MBE-grown Effective QSH system

In the "QSH" phase, $R_{xx} > h/2e^2$, which suggests scattering between the two chiral edge channels.

G. Jiang et al., (unpublished)

Summary

 Cr+V co-doped (Bi,Sb)₂Te₃ shows improved QAHE and ferromagnetism.

 The improved material enables us to make interesting structures based on QAH systems.

Thank you for your attention !

