

KAVLI ITS WORKSHOP 5.5.2018

InAs/GaSb Quantum Spin Hall & Beyond

Rui-Rui Du Peking University

AKNOWLEDGE

Jie Zhang

Rice

Lingjie Du

Tingxin Li

A Gift from Nature

intel

5

Ν

Ρ

As

Sb

15

33

51

€ 6

FQHE

Infrared Detectors

OUTLINES

- **1. Introduction**
- 2. Materials and Devices
- **3. Topological Exciton Insulator**
- 4. Large Gap TI & Beyond

Two dimensions : Quantum Spin Hall Insulator

- I. Graphene Kane, Mele PRL '05
 - Intrinsic spin orbit interaction ⇒ small (~10mK-1K) band gap
 - S_z conserved : "| Haldane model |²"
 - Edge states : G = 2 e²/h

II. HgCdTe quantum wells

Theory: Bernevig, Hughes and Zhang, Science '06 Experiement: Konig et al. Science '07

Quantized Conductance of Edge States

Phys. Rev. Lett. 2011, *Knez et al*, Evidence for edge modes *Phys. Rev. Lett.* 2012, *Knez et al*, Perfect Andreev reflection of edge-SC junction *Phys. Rev. Lett.* 2015, *Du et al*, Quantized edge states for small samples

Phys. Rev. Lett. 2014, Stanton et al, Phys. Rev. Lett. 2014, Knez et al. Phys. Rev. Lett. 2015, Li et al Phys. Rev. Lett. 2017, Du, et al , N.Comm. 2017, Du et al

The Exciton Analog of BCS Superconductivity

Electron-Hole Pairing

Cooper Pairing

Mott, Philos Mag 1961 Knox, 1963 Keldysh, Yu.V., Fizika ,1964 Jerome, Rice, Kohn, 1967 Halperin & Rice, Rev Mod Phys, 1968

PHYSICAL REVIEW

VOLUME 126, NUMBER 5

JUNE 1, 1962

Bose-Einstein Condensation of Excitons

JOHN M. BLATT Courant Institute of Mathematical Sciences, New York University, New York, New York and Applied Mathematics Department, University of New South Wales, New South Wales, Australia

AND

K. W. BÖER AND WERNER BRANDT Department of Physics, Radiation and Solid-State Laboratory, New York University, New York, New York (Received January 8, 1962)

Recent Results for Exciton Physics in 3D and 2D Quantum Materials

Science 2017 SOLID-STATE PHYSICS

Signatures of exciton condensation in a transition metal dichalcogenide

Anshul Kogar,¹ Melinda S. Rak,¹ Sean Vig,¹ Ali A. Husain,¹ Felix Flicker,² Young II Joe,¹ Luc Venema,^{1*} Greg J. MacDougall,¹ Tai C. Chiang,¹ Eduardo Fradkin,¹ Jasper van Wezel.³ Peter Abbamonte¹+

Nature Commun. 2017 ARTICLE

Received 20 Feb 2017 | Accepted 14 Mar 2017 | Published 4 May 2017

Ol: 10.1038/ncomms15251 **OPEN**

Coulomb engineering of the bandgap and excitons in two-dimensional materials

Archana Raja^{1,2,3,4}, Andrey Chaves^{2,5}, Jaeeun Yu², Ghidewon Arefe⁶, Heather M. Hill^{1,3}, Albert F. Rigosi^{1,3}, Timothy C. Berkelbach⁷, Philipp Nagler⁸, Christian Schüller⁸, Tobias Korn⁸, Colin Nuckolls², James Hone⁶, Louis E. Brus², Tony F. Heinz^{1,3,4}, David R. Reichman² & Alexey Chernikov^{1,8}

OUTLINES

1. Introduction

2. Materials and Devices

Topo Exciton Insulator
 Large Gap TI

6.1 A Family

Liu, *et al*, *PRL* **100**, 236601(2008)

1. Band parameter $\Delta E = E1 - H1$ tuned by width, x, gates

2. ∆E < 0 inverted -0.15 eV to 0 Tunneling mix e-h and opens a gap at finite k-vector

Wafer and Device

Two Limits of Coupling

ICQM PKU

Gerry Sullivan and Amal Ikhlassi

OUTLINES

1. Topology and Physics

2. Materials and Devices

3. ToPo Exciton Insulator

4. Novel Edge States
 5. Outlook

Example: G1 T = 300 mK 50 μ m Hall Bar

Example: G1 T = 300 mK 50 μ m Hall Bar

Truly Insulating Bulk $\rho_{Bulk} >> 10 M\Omega$

ARTICLE

DOI: 10.1038/s41467-017-01988-1

OPEN

Evidence for a topological excitonic insulator in InAs/GaSb bilayers

Lingjie Du¹, Xinwei Li², Wenkai Lou ³, Gerard Sullivan⁴, Kai Chang³, Junichiro Kono^{1,2,5} & Rui-Rui Du^{1,6}

e⁻

 h^+

Editors' ChoicePhysics **Probing an excitonic insulator** 1.Jelena Stajic

Science 22 Dec 2017: Vol. 358, Issue 6370, pp. 1552-1553 DOI: 10.1126/science.358.6370.1552-g ARTICLE

DOI: 10.1038/s41467-017-01988-1

OPEN

Evidence for a topological excitonic insulator in InAs/GaSb bilayers

Lingjie Du¹, Xinwei Li², Wenkai Lou ³, Gerard Sullivan⁴, Kai Chang³, Junichiro Kono^{1,2,5} & Rui-Rui Du^{1,6}

e⁻

 h^+

Editors' ChoicePhysics **Probing an excitonic insulator** 1.Jelena Stajic

Science 22 Dec 2017: Vol. 358, Issue 6370, pp. 1552-1553 DOI: 10.1126/science.358.6370.1552-g

THz Absorption Spectrum

Transport Measurements

Conductance Plateau up to 4 K

Non-Local Ede Transport: H-Bar

Lingjie Du

SQUID Imaging of InAs/GaSb Edge Modes

QSHE vs. Exciton Condensation

Coupling term between two layers

$$H_{12}(k) \quad odd-parity \quad even-parity \\ = A(k_x\sigma_3 + ik_y\sigma_0) - i\Delta_z\sigma_2 \\ - \Delta^{mf}(k)$$

A competition between even- and odd-parity exciton condensate the parity of order parameter $\mathcal{P} = \frac{\Delta_{\text{tot}}^{\text{even}} - \Delta_{\text{tot}}^{\text{odd}}}{\Delta_{\text{tot}}^{\text{even}} + \Delta_{\text{tot}}^{\text{odd}}}$

- For small A, topologically trivial *s*wave exciton condensate phase
- For large A, topologically nontrivial QSH insulator phase with a *p*-wave exciton order parameter

$$\mathcal{T}^{\mathrm{br}} = rac{\Delta^{\mathrm{br}}_{\mathrm{tot}}}{\Delta^{\mathrm{ts}}_{\mathrm{tot}} + \Delta^{\mathrm{br}}_{\mathrm{tot}}}$$

Phys. Rev. Lett.112, 176403(2014)

APS March Meeting 2018, LA, California, USA

a) V_{TG} = -1.25V 4.5K 10.7K 200 15.65K 18.5K 21.2K R_{XX} /kΩ 29.5K 35.3K 39.2K 100 0 8 2 6 10 V_{BG} /V

Exciton Condensation in e/h Bilayers with Middle Barrier

OUTLINES

- 1. Topology and Physics
- 2. Materials and Devices
- 3. Exciton Insulator

4. Large Gap Tl

Strained QWS

Strain Effects on the Band Structures

9.5 nm InAs/4 nm Ga_{0.75}In_{0.25}Sb

Akiho T, Couëdo F, Irie H, Suzuki K, Onomitsu K, Muraki K. Engineering quantum spin Hall insulators by strained-layer heterostructures[J]. Applied Physics Letters. 2016,109(19):192105.

Enhanced Bulk Hybridization Gaps

Quantized Edge Transport in 10 um Length

Quantized in a 10um Hall Bar

TRS Protected Helical Edge States

9.5 nm InAs/4 nm Ga_{0.75}In_{0.25}Sb

CONDENSED MATTER PHYSICS

Quantum spin Hall insulator with a large bandgap, Dirac fermions, and bilayer graphene analog

Sergey S. Krishtopenko^{1,2} and Frédéric Teppe¹*

All based on InAS/GaSb and InAs/InGaSb

Gap > 50 meV

Large Fermi velocity

Compatible with III-V CMOS Technology

Nano Lett. 2012, 12, 3592-3595

NANOLETTERS

Letter

pubs.acs.org/NanoLett

III-V Complementary Metal-Oxide-Semiconductor Electronics on Silicon Substrates

Junghyo Nah,^{†,‡,§,||,⊥} Hui Fang,^{†,‡,§,⊥} Chuan Wang,^{†,‡,§} Kuniharu Takei,^{†,‡,§} Min Hyung Lee,^{†,‡,§,#} E. Plis,^{\circ} Sanjay Krishna,^{\circ} and Ali Javey^{†,‡,§,*}

[†]Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States

Marcus, Palmstrøm groups

Our Group

 $\mathsf{I}_{\mathsf{DC}}\left(\mu\mathsf{A}\right)$

3. Double-Layer Excitonic Condensations

SUMMARY

- 1) Exciton Insulator observed –equilibrium excitonic condensation
- 2) Topological EI when there is no tunneling barrier quantum spin Hall edge states
- 3) Large gap TI is within reach
- 4) Next : Majorana platform

A clean laboratory for electron/hole many-particle physics

1. Materials: Strained-Layer InAs/GaInSb

2. Large-Gap QSHI

3. Double-Layer Excitonic Condensation

6.1 A Family

- Band parameter
 △E = E1 H1 tuned by width, x, gates
- 2. ∆E < 0 inverted -0.15 eV to 0 Tunneling mix e-h and opens a gap at finite k-vector

Wafer and Device

Three Regimes of InAs/GaSb System

Quantum Spin Hall Insulators (QSHIs)

InAs/GaSb QWs in Shallowly Inverted

Properties of InAs/GaSb Edge States

- * Quantized conductance for small samples
- * Non-quantized conductance for large samples
- * Conductance does not change under high B//

b)

Low velocity of edge modes

 $U_{\rm F} \sim 2 \ x 10^4 \ m/s$ $k_{\rm F} \sim 1 \ x \ 10^6/cm$

•Extreme. long scattering time

 $\tau = \lambda / U_F = 4 \mu m / (2x10^4 m/s) \sim 200 \ ps$

Tunable mode dispersion

49

WHY Large-gap 2D Topological Insulators

Recover single particle
 properties

"Plain Vanilla QSHI"

- More insulating bulk gaps
- Long coherent length

Strained QWS

Strain Effects on the Band Structures

9.5 nm InAs/4 nm Ga_{0.75}In_{0.25}Sb

Akiho T, Couëdo F, Irie H, Suzuki K, Onomitsu K, Muraki K. Engineering quantum spin Hall insulators by strained-layer heterostructures[J]. Applied Physics Letters. 2016,109(19):192105.

Enhanced Bulk Hybridization Gaps

Coherent length increases with increasing V_F

Quantized Edge Transport in 10 um Length

Quantized in a 10um Hall Bar

TRS Protected Helical Edge States

9.5 nm InAs/4 nm Ga_{0.75}In_{0.25}Sb

Compatible with III-V CMOS Technology

Nano Lett. 2012, 12, 3592-3595

NANOLETTERS

Letter

pubs.acs.org/NanoLett

III-V Complementary Metal-Oxide-Semiconductor Electronics on Silicon Substrates

Junghyo Nah,^{†,‡,§,||,⊥} Hui Fang,^{†,‡,§,⊥} Chuan Wang,^{†,‡,§} Kuniharu Takei,^{†,‡,§} Min Hyung Lee,^{†,‡,§,#} E. Plis,^{\circ} Sanjay Krishna,^{\circ} and Ali Javey^{†,‡,§,*}

[†]Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States

Marcus, Palmstrøm groups

Our Group

 $\mathsf{I}_{\mathsf{DC}}\left(\mu\mathsf{A}\right)$

3. Double-Layer Excitonic Condensations

The Exciton Analog of BCS Superconductivity

Electron-Hole Pairing

Cooper Pairing

Mott, Philos Mag 1961 Knox, 1963 Keldysh, Yu.V., Fizika ,1964 Jerome, Rice, Kohn, 1967 Halperin & Rice, Rev Mod Phys, 1968

Large Energy Scale

Observation

T > 4 K

Main Peak

Onset 40 K Gap 90 K

Side Peak

Onset 15 K Gap 25 K

THz Absorption Shows e-h Pair-breaking Excitation

Summary for Large Gap QSHI in Strained Layer QWs 🐼 RIC

- The strained InAs/Ga_{1-x}In_xSb QWs offers
 - Larger bulk insulating gap up to 50 meV
 - Z2 2D topological insulator
 - Double-layer exciton condensation
- Future work:

- SC Proximity + Edge States + FM Insulator
- Counter-flow experiments

QSH Edge Majorana Platform

