

Kavli ITS workshop on "topological matter & quantum computation"

Majorana zero mode inside vortex of topological superconductors

Jinfeng Jia

School of Phys. & Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China Email: jfjia@sjtu.edu.cn

Beijing, May 4-6, 2018

- Introduction
- Topological superconductor by proximity effects
- Majorana fermion in the vortex
- Summary

TSC by Proximity effect

Proximity effect between SC and TI leads to "p_x+ip_y" SC-like-state

Majorana Bound States (MBS) at magnetic vertices

Quasiparticle Bound state at E=0

Majorana Fermion y₀

L. Fu and C.L. Kane PRL 100, 096407 (2008)

MBE growth to obtain sharp interface.

Bi-Sb, Bi₂Te₃, Sb₂Te₃, Bi₂Se₃,

- heavy atoms
- Stable at T<300 °C

Our previous work on TI fims

High quality Bi₂Te₃, Bi₂Se₃,Sb₂Te₃ thin films by MBE

-0.2

- Control the type of Bi₂Te₃ films
- Studies by LTSTM & ARPES
 - Standing wave PRL 103, 266803 (2009)
 - Landau levels PRL 105, 076801 (2010)
 - Formation of DC

- Nature Phys. 6, 584 (2010)

TI on SC, much easier to achieve

Bi₂Se₃ films grown on NbSe₂

SC

Sharp interface

Less defects

A platform for searching Majorana Fermions

6 APRIL 2012 VOL 336 SCIENCE

Science 336, 52-55 (2012)

Bi₂Te₃ on NbSe₂

Fermi levels of Bi₂Te₃ films grown at different temperatures

Adv. Mater. 22(36), 4002-4007 (2010)

Topological superconductor

Full gap topological superconductor!

- Introduction
- Topological superconductor by proximity effects
- Majorana fermion in the vortex
- Summary

MF: Zero energy

Quasiparticle Bound state at E=0

Majorana Fermion y₀

L. Fu and C.L. Kane PRL 100, 096407 (2008) C.W.J. Beenakker, Ann. Rev. Conden. Matter Phys., 4:113-136 (2013)

Vortex lines in topological insulator-superconductor heterostructures

- In most case, the bulk effects can be ignored
- A Majorana fermion is stable with a spatial extent~40nm
- Chemical potential & Majorana states
- Majorana fermions can survive for thick samples

```
Hughes group, PRB 84, 144507 (2011)
PRB 87, 035401 (2013)
```

Selective Equal-Spin Andreev Reflections Induced by Majorana Fermions

P. A. Lee, K. T. Law, PRL 112, 037001 (2014)

The SESARs can also be used to detect MFs if spin-polarized leads are used.

Zero energy

Features of MF

E

Δ

0

 $-\Delta$

Cone shape distribution

SSAR or SESAR

 $\gamma_0^{\dagger} = \gamma_0$

Detect Majorana fermion by zero-energy peak

Magnetic field dependence of ZBP

Spatial distribution of Majorana fermion

Splitting of Zero-bias peaks

PRL 114, 017001 (2015)

Non-zero splitting

Core states splitting in CSC

Hess et al., Phys. Rev. Lett. 62, 214 (1989) F. Gygi, M. Schluter, PRB 43, 7609 (1991)

Core states splitting in TSC

Spatial extent of Mojorana fermion

 A Majorana fermion in a spatial extent~40nm

> Hughes group, PRB 84, 144507 (2011) PRB 87, 035401 (2013)

Strong evidence for existence of Majorana mode

Evolution of DOS with thickness

PRL 115, 177001, 2015

Energy-space distribution of DOS of quasiparticles: dl/dV in experiments

smearing factor in energy

 $\eta = 0.2 \Delta_0$ ~4K

Y shape ⇔ w MBS V shape ⇔ w/o MBS

full agreement with experiments !

Thickness vs. chemical potential

theoretically thickness only cannot induce phase transition, but μ can.

More evidence

Spatial distribution at zero energy

5QL@ 0.1T 5QL@ 0.18T 2.8 1.20 2.4 1.15 zero bias conductance zero bias conductance 2.0 1.10 1.6 1.05 1.2 1.00 0.8 0 10 20 30 40 10 20 30 40 0 Distance (nm) distance (nm)

Experimental spatial distribution of Majorana fermion

Substrate the data with MF (5QL at 0.1T) by the data without MF (5QL at 0.18T), one should get the contribution of MF (left). The right one is the calculated probability distribution of a Majorana bound state in vortex(PRB84,144507).

Zero energy

Features of MF

E.

Δ

0

 $-\Delta$

Cone shape distribution

SSAR or SESAR

 $\gamma_0^{\dagger} = \gamma_0$

Spin selective Andreev reflection

SSAR observed by SPSTM

- Nonmagnetic
- Low applied field (0.1T)
- SSAR can
 only induced
 by MF

Comparison with model calculations

Compare with no-MF cases

arXiv:1603.02549 Phys.Rev.Lett. 116, 257003 (2016)

Why transition at 4QL?

PRL 114, 017001 (2015)

All evidences are consistent

5QL Bi₂Te₃

H. H Sun and J. F Jia, Sci. China-Phys. Mech. Astron. 60 (5), 057401 (2017)

Turn MF on/off

PRL 114, 017001 (2015)

npj Quantum Materials (2017) 2:34 ; doi:10.1038/s41535-017-0037-4

Artificial topological superconductor by proximity effect

Acknowledgments

QK Xue

C.H. Liu

C.L. Gao

D. Qian

Zhuan Xu

Theoreticians: F. Liu, S.B. Zhang, X.C.

S.C.Li

Xie, Z. Fang, X. Dai, S. Q. Shen, Xiao-Liang Qi, Shou-Cheng Zhang., Q.H. Wang, Y. Chen, Y. Zhou

F.C. Zhang Liang Fu

M.X. Wang, J.P. Xu, H.H. Sun, G.Y. Wang, D. Xu, L. Miao, F. Yang, M.Y. Yao, Z. F. Wang, K.W. Zhang, Lun-Hui Hu, Chuang Li

Supported by NSFC, MOST and MOE

Thank you very much!

Conductance and width of ZBP VS tunneling current

Tip touchs sample ~600nA Conductance saturate: 2G₀ MZM+2 normal modes

Possible application in topological quantum computing

Advantages

- Simple
- Low magnetic field ~0.1T
- E_f can be tuned, no gate is needed
- Protected by superconducting gap
- Easy to increase the temperature
- No effect by impurities
- ② 2D system, easy to manipulate

Braiding

Vortex can be easily moved and positioned by scanning SQUID
Nano Lett. 16, 1626 (2016)

Fusion = read out

How to detect the result?

• Junction? Microwave? Spin?.....

Majorana bound states in thick TI film

Energy dispersion and distribution of DOS of quasiparticles

$$k_0^{-1} = v_{\rm F}/\epsilon_0 \simeq 2 {\rm nm}$$

* coherence length

$$\xi = v_{\rm F} / \Delta_0 = 50 k_0^{-1}$$

MBS at small Fermi level ⇔ thick TI film

suppression of MBS **←** bulk conduction bands induce interactions in thin TI film

Fu and Kane, PRL 100, 96407 (2008). Hosur, et al., PRL 107, 097001 (2011).
Z.-Z. Li, F.-C. Zhang, and Q.-H. Wang, Sci. Rep. 4, 6363 (2014).

^{*} typical length

Evolution of DOS with thickness

PRL 115, 177001, 2015

Energy-space distribution of DOS of quasiparticles: dl/dV in experiments

smearing factor in energy

 $\eta = 0.2 \Delta_0$ ~4K

Y shape ⇔ w MBS V shape ⇔ w/o MBS

full agreement with experiments !

Thickness vs. chemical potential

theoretically thickness only cannot induce phase transition, but μ can.

Vortex on topological superconductor

Coherence length and core states

- Coherence length deduced from Vortex
- Much larger than that in NbSe₂
- Saturate at 3QL
- Change with magnetic field
- Saturate at ~0.7T
- Core states observed

PRL 112, 217001 (2014)

Momentum-space imaging of Cooper pairing

nature

ohysics

ARTICLES PUBLISHED ONLINE: 2 NOVEMBER 2014 | DOI: 10.1038/NPHYS3139