Realizations of non-Abelian statistics (fractionalized degrees of freedom)

Xiao-Gang Wen (2018/5 KITS)

Xiao-Gang Wen (2018/5 KITS) Realizations of non-Abelian statistics (fractionalized degrees o

Topological order = pattern of many-body entanglement \rightarrow fractionalization and protected qubits Wen PRB **40** 7387 (89)

- Topological orders are new states of quantum matter beyond symmetry breaking.
- They have fractional quantum numbers and fractional statistics (including **non-Abelian statistics**).
- Non-Abelian statistics has fractional degrees of freedom.
 Quantum dimension d:

spin-1/2: d = 2 degrees of freedom

Ising anyon: $d = \sqrt{2}$ degrees of freedom

Fibonacci anyon: $d = (\sqrt{5} + 1)/2$ degrees of freedom

- Let $D_{trap}(N)$ be the number of degenerate states of N trapped quasi-particles. The quantum dimension of the quasi-particle is

 $d = \lim_{N \to \infty} [D_{\rm trap}(N)]^{1/N}$

 \bullet The degeneracy of trapped non-Abelian anyons is robust against all perturbations \to Fault tolerant topo. quantum computation.

First examples of non-Abelian topological order

Let $\chi_m(\{z_i\})$ be the many-body wavefunction of *m* filled Landau levels, where $z_i = x_i + iy_i$.

- Laughlin $\nu = 1/3$ state (Abelian): $\Psi_{\nu=1/3} = (\chi_1)^3$
- $SU(m)_k$ state via slave-particle

Wen PRL 66 802 (1991)

$$\Psi_{SU(3)_2} = (\chi_2)^3, \ \nu = \frac{2}{3}; \quad \Psi_{SU(2)_2} = \chi_1(\chi_2)^2, \ \nu = \frac{1}{2};$$

 \rightarrow SU(2)_2, SU(3)_2 Chern-Simons theory \rightarrow non-abelian statistics

• Pfaffien state via CFT correlation Moore-Read NPB 360 362 (1991) $\Psi_{Pfa} = \mathcal{A}[\frac{1}{z_1 - z_2} \frac{1}{z_3 - z_4} \cdots] \prod (z_i - z_j)^2 e^{-\frac{1}{4} \sum |z_i|^2}, \quad \nu = \frac{1}{2}$

- The $\Psi_{SU(2)_2}$ and Ψ_{Pfa} states have Ising non-abelian anyons
- The $\Psi_{SU(3)_2}$ state has **Fibonacci non-abelian anyon**.
- Fibonacci non-abelian anyons can do universal quantum computation, while Ising non-abelian anyons cannot.

How to realize non-Abelian FQH states

• $\Psi_{\nu=2/5} = (\chi_1)^2 \chi_2$ can be realized if the first 2 LLs are degenerate $\Psi_{SU(2)_2} = \chi_1(\chi_2)^2$ can be realized if the first 3 LLs are degenerate $\Psi_{SU(3)_2} = (\chi_2)^3$ can be realized if the first 4 LLs are degenerate

- $\Psi_{SU(2)_2} = \chi_1(\chi_2)^2$ state contains a neutral fermionic quasiparticle ψ . By condensing ψ into different IQH states, we can obtain Ψ_{Pfa} , $\Psi_{\text{PH-Pfa}}, \Psi_{\overline{\text{Pfa}}}, \Psi_{\overline{SU(2)_2}}, \text{ etc.}$
- Ψ_{PH-Pfa} is realized in the 2nd LL.
- Realizing non-Abelian FQH state in bi-layer systems
- Starting with (nnm) state

 $\Phi_{nnm} = \prod (z_i - z_j)^n (w_i - w_j)^n (z_i - w_i)^m e^{-\frac{1}{4} \sum |z_i|^2 + |w_i|^2}$

where n = odd for fermionic electron.

- Increase interlayer tunneling to induce an one-layer FQH state

States induced by interlayer tunneling: $\mathcal{A}(331)$ and $\mathcal{A}(330)$

- The tunneling-induced one-layer state via anti-symmetrization: $\Psi_{\mathcal{A}(nnm)}(x_i) = \mathcal{A}[\prod (z_i - z_j)^n (w_i - w_j)^n (z_i - w_j)^m].$
- Characterize them with pattern-of-zeros: Wen-Wang arXiv:0801.3291 (similar to s-wave, p-wave, etc of superconducting states)

	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	<i>S</i> ₅	•••
$\Psi_{\mathcal{A}(331)}$	1	5	10	18	• • •
$\Psi_{\mathcal{A}(330)}$	1	3	6	12	•••
$\prod (z_i - z_j)^n$	n	3 <i>n</i>	6 <i>n</i>	10 <i>n</i>	•••

 S_a = total relative angular momentum of a electrons.

- Obtain their properties using $POZ \rightarrow Spectrum$ of gapless edge excitations. The ground state has a total angular momentum M_0 . The chiral edge excitations have higher angluar mementa $M_0 + m$. $D_{edge}(m) =$ number of edge excitations at $M_0 + m$.
- How to compute $D_{edge}(m)$?

 $D_{\text{edge}}(m) = \text{number of anti-symmetric holomorphic functions}$ $\Psi(z_i)$ whose *n*-electron relative angular momentum $\tilde{S}_n \ge S_n$.

Realizations of non-Abelian statistics (fractionalized degrees o

The edge spectrum $D_{edge}(m)$

<i>m</i> :	0	1	2	3	4	• • •	С	remark
$\Psi_{\mathcal{A}(331)}$	1	1	3	5	10	•••	$\frac{3}{2}$	Edge: chiral Majorana fermion.
								Bulk: Ising anyon
$\Psi_{\mathcal{A}(330)}$	1	1	3	6	13	•••	2	
$\prod (z_i - z_j)^n$	1	1	2	3	5	P_m	1	Edge chiral complex fermion

- The edge spectrum $D_{\text{edge}}(m)$ is described by **central charge** c. For $\prod (z_i - z_j)^m$: $P_m \sim \frac{1}{4m\sqrt{3}} e^{\pi \sqrt{\frac{2m}{3}}} \sim e^{c\pi \sqrt{\frac{2m}{3}}}$ with c = 1.
- The central charge can be measured by specific heat $C = c \frac{\pi}{6} \frac{k_B^2 T}{v \hbar}$ or quantized thermal Hall conductivity $\kappa_{xy} = c \frac{\pi}{6} \frac{k_B^2 T}{\hbar}$
- The edge spectrum $D_{edge}(m) = finger print for FQH states:$
- $D_{\text{edge}}(m)$ = partition number $o \Psi_{
 u=1/m}$ is an Abelian state.
- $\Psi_{\mathcal{A}(331)} = \Psi_{Pfa}$ has lsing non-Abelian anyon (Z_2 parafermion non-Abelian statistics) \leftrightarrow Edge chiral Majorana fermion
- $\Psi_{\mathcal{A}(330)}$ has Z_4 parafermion non-Abelian statistics. Blok-Wen Nucl. Phys. B374, 615 (92); Read-Rezayi cond-mat/9809384

Bilayer FQH in a wide quantum well (width = 48nm)

- For very large interlayer tunneling, we get a single-layer compressible state at $\nu = 1/2$.
- For very small interlayer tunneling, we get a bi-layer (331) state.
- In between, we may get the Z₂ parafermion non-Abelian state.
- To get (331) state from $\nu = 1/2$ FL state, we need a *d*-wave pairing \rightarrow impossible.
- *p*-wave pairing on
 - $\nu = 1/2$ FL state gives us Z_2 parafermion non-Abelian state.
- With less interlayer tunneling, can we see Z₂ parafermion
 → (331) transition?

Xiao-Gang Wen (2018/5 KITS)

Realizations of non-Abelian statistics (fractionalized degrees o

Two-component states in bi-layer systems

Consider two-component bi-layer FQH states, such as $\Psi(z_i, w_i) = \prod (z_i - z_i)^n (w_i - w_i)^n (z_i - w_i)^m$

- The pattern-of-zeros description of two-component states: S_{ab} = the total relative angular momentum for a cluster of a electron in layer-1 and **b** electron in layer-2.
- For the (nnm) state $S_{ab} = n \frac{a(a-1)}{2} + n \frac{b(b-1)}{2} + mab$:
- There are other more interesting FQH states described by different POZs, such as $\nu = \frac{4}{5}, \frac{4}{7}$ bi-layer states: Barkeshli-Wen arXiv:0906.0341

$\Psi_{(331)}^{\nu=1}$./2 L),	<i>c</i> =	2	
S _{ab}	0	1	2	3
0	0	0	3	9
1	0	1	5	12
2	3	5	10	18
3	9	12	18	27

Compare to the $\nu = \frac{2}{5} + \frac{2}{5}$ state, the $\nu = 4/5$ state has the same intralayer avoidance and a stronger interlayer avoidance.

Fibonacci non-Abelian statistics in wide quantum wells ?

- Just like $(\chi_2)^3$ state, the $\Psi_{SU(3)_2/U^2(1)}$ state also have Fibonacci non-Abelian anyon
- $\nu = 4/5$ FQH state was observed in bi-layer systems (wide quantum wells).

Is it a Fibonacci FQH state that can do universal topological quantum computation?

Shabani, Shayegan, etal arXiv:1306.5290

B (T) T ≈ 30 mK 3 4 2 (h/e^2) 48 nm (1011 cm-2 2/5 2/3 5/7 3/7 3/5 4/7 3.69 3.42 6 3.26 R_{xx} (k Ω) 2.80 2 0 15 2.0 2.5 1/\

Xiao-Gang Wen (2018/5 KITS)

Realizations of non-Abelian statistics (fractionalized degrees o

Half-qubit on extrinsic defect

- Extrinsic defects: vortex, end of line, dislocation, etc
- Extrinsic defects can carry half-qubit $d = \sqrt{2}$
- An extrinsic defect carrying half-qubit is not an non-Abelian anyon, since they cannot move. Such extrinsic defect can appear in 3D.
 Teo-Kane, "Majorana Fermions and Non-Abelian Statistics in Three Dimensions", 09
- A point-like excitation carrying half-qubit is an Ising non-Abelian anyon. Such non-Abelian anyon can only appear in 2D.

Wen PRL 66 802 (1991); Moore-Read NPB 360 362 (1991)If 2D bulk has Ising non-Abelian anyon, then the edge must has1D chiral Majorana fermion.Wen PRL 70 355 (93)

- For some free fermion systems, certain extrinsic defect can carry half-qubit \rightarrow Majorana zero mode (not Majorana fermion).
- If 2D bulk has particle carrying *Majorana zero mode*, then the edge must has 1D chiral *Majorana fermion*.

Realizing Majorana zero mode (MZM)

- Vortex in 2D p + ip superconductor.
- End of *p*-wave superconducting chain.
- Vortex in 2D SC-TI junction.

Read-Green, cond-mat/9906453 Kiteav, cond-mat/0010440 Fu-Kane, arXiv:0707.1692

• FeSe wire of width 5 \sim 10nm, springkled with magnetic atoms. The MEC can induce Yu-Shiba states, forming a TSC with MZM

L. Yu, Acta Phys. Sin. 21 75 (65)

Ji-Wen arXiv:1804.10198

