

UCDAVIS

Machine Learning of Magnetic Phase Transitions

- 1. Introduction
- 2. Classical Models of Magnetism
- 3. Quantum Models of Itinerant Magnetism
- 4. Conclusions

Wenjian Hu

Natanael Costa

Rajiv Singh

Work supported by NNSA SSAA Program, DE-NA0002908

1. Introduction

Powerful array of existing tools to quantify phase transitions in Monte Carlo:

- Identification of appropriate order parameters.
- Identification of appropriate response functions.
- Finite size scaling.
- Dynamics.

Can require a degree of creativity (even for known order parameter):

- Binder ratio $\langle M^4 \rangle / \langle M^2 \rangle^2$
- Pairing Vertex, $\Gamma = P^{-1} \bar{P}^{-1}$

Forefront of condensed matter physics today

• Competing types of order

Cuprates: superconductivity, antiferromagnetism, stripes, nematic, \cdots

• More subtle (eg topological) phases.

Develop methods which are useful if the order parameter is not known.

• Recognize novel phases hidden in vast dance of degrees of freedom simulated.

Principal Component Analysis

Basic technical data analysis method of all results presented here.

- P simulations at different parameter values (T, U, ρ) .
- L configurations (collection of N degrees of freedom S_j) from each simulation.
- Arrange configurations S_j as row j of a matrix X.
- X is rectangular: PL rows and N columns.
- Construct $\mathcal{M} = X^T X$ (square, dimension N).
- Diagonalize \mathcal{M} . Eigenvalues λ_i , "relative variance" $\tilde{\lambda}_i = \lambda_i / \sum_i \lambda_i$

• Inner product of eigenvectors v_i with configurations: $p_{ij} = v_i \cdot S_j$ "principal components"

- Topology of $\{(p_{1j}, p_{2j})\}$ through transition $(v_1, v_2: \text{ two largest } \lambda_1, \lambda_2).$
- Quantified principal components: $\mathcal{P}_i = \langle |p_i| \rangle = \sum_j |p_{ij}|$

Remainder of this talk: Results

Phase transitions of classical spin models.

Phase transitions of quantum Hamiltonians (itinerant electrons).

2. Classical Models of Magnetism

(i) Ising Model $E = -J \sum_{\langle ij \rangle} S_i S_j$ $S_i = \pm 1$

[See also L. Wang, PRB94, 195105 (2016);J. Liu, Y. Qi, Z.Y. Meng and L. Fu, PRB95, 041101 (2017)]

- (a) Relative variances $\tilde{\lambda}_i$ drop rapidly with i
- (b) { (p_{1j}, p_{2j}) } changes topology at $T_c \sim 2.269$. bifurcates $\rightarrow 2$ clusters.
- (c) \mathcal{P}_1 mimics $\langle |M| \rangle$.
- (d) \mathcal{P}_2 mimics χ .

- (a) Leading eigenvector v_1 uniform (ferromagnetic).
- (b) Subleading eigenvector v_2 domain walls.
- (c) Compare to $v'_2 =$ $(\cos(r_1k_1), \cos(r_2k_1), \cdots) +$ $(\cos(r_1k_2), \cos(r_2k_2), \cdots)$ $k_1 = (2\pi/L, 0), k_1 = (0, 2\pi/L)$
- (d) Extrapolate peaks T*of $\mathcal{P}_2(T)$ with 1/L.

(ii) Blume-Capel Model $E = -J \sum_{\langle ij \rangle} S_i S_j + \Delta \sum_i S_i^2$ $S_i = 0, \pm 1$ Ising Model in limit $\Delta \to -\infty$ Tricritical point at $(T/J, \Delta/J) \sim (0.61, 1.97)$

(ii) Blume-Capel Model in second order regime, T = 1.0.

- (a) Relative variances $\tilde{\lambda}_i$ drop rapidly with i
- (b) { (p_{1j}, p_{2j}) } changes topology at $\Delta_c \sim 1.7$. 2 cluster bifurcation.
- (c) \mathcal{P}_1 mimics $\langle |M| \rangle$.
- (d) \mathcal{P}_2 mimics χ .

(ii) Blume-Capel Model in first order regime, T = 0.3.

- (a) Relative variances $\tilde{\lambda}_i$ drop rapidly with i
- (b) { (p_{1j}, p_{2j}) } changes topology at $\Delta_c \sim 2.0$.
- (c) \mathcal{P}_1 mimics $\langle |M| \rangle$.
- (d) \mathcal{P}_2 mimics χ .

First order character is evident!

(iii) Triangular Lattice Ising Model

No long range order at T = 0 (power law spin-spin correlations).

PCA recognizes "incipient ordering"!

(a) Pair of large variances λ_i
(b) High and low T
scatter points separate.
(c,d) Growth of P₁, P₂.
(e,f) Ordering patterns:
(m, 0, -m); (m, -m/2, -m/2)

These patterns emerge with

- weak transverse field.
- weak interlayer coupling.

(iv) Biquadratic Exchange Spin One Ising

$$E = -J \sum_{\langle \langle ik \rangle \rangle} S_i S_k + K \sum_{\langle ij \rangle} S_i^2 S_j^2 \qquad S_i = 0, \pm 1$$

K > 0: Energetically unfavorable $\langle ij \rangle$ both occupied $(S_i = \pm 1)$.

- Occupied sites surrounded by vacancies.
- However no preferred spin orientation.

One sublattice empty $(S_i = 0)$.

Other sublattice *each* site two choices: $S_i = \pm 1$.

• Similar issues to Ising square ice (Carrasquilla)?

Challenge to machine learning:

- Large ground state degeneracy.
- Does a phase transition occur?

(iv) $E = -J \sum_{\langle \langle ik \rangle \rangle} S_i S_k + K \sum_{\langle ij \rangle} S_i^2 S_j^2$

Model not well-studied. Conventional Monte Carlo. Spin config snapshots Top(bottom): J = 0.0 (0.1)High, intermediate, low T. $T \sim K$ occupied sites surrounded by empties. Order does not emerge J = 0.0. Confirm with $C, S, \langle M \rangle, \chi$.

(iv) Biquadratic Exchange Spin One Ising

Top row: J = 0.0

- (a) Relative variances
 No dominant λ
 _i.
 (b) { (p_{1j}, p_{2j}) }
- No hint of ordering.

(c) $\{(p'_{1j}, p'_{2j})\}$ projections of squares of spin configurations exhibit structure but no symmetry breaking (bifurcation in scatter plot).

Model exhibits only gradual crossover at J = 0.0.

(iv) Biquadratic Exchange Spin One Ising

Bottom row: J = 0.1

(a) Relative variances Dominant $\tilde{\lambda}_i$ emerges. (b) { (p_{1j}, p_{2j}) } Recognize four-fold 'spin' symmetry of ground state. (c) { (p'_{1j}, p'_{2j}) } Recognize two-fold 'charge' symmetry of ground state.

Dominant variance N_v related to ground state degeneracy: $N_g = 2^{N_v}$.

(v) XY Model $E = -J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j)$

Top:

Feed $(\cos\theta, \sin\theta)$ into PCA.

(a) Two equally weighted relative variances.

(b) Principle components occupy periphery of circle at low T.

(c) $\sqrt{\mathcal{P}_1^2 + \mathcal{P}_2^2}$ shows signal near $T_{KT} \sim 0.892$.

(v) XY Model $E = -J \sum_{\langle ij \rangle} \cos(\theta_i - \theta_j)$

Bottom:

Local vorticity V_i into PCA. (d) No dominant λ_i (red).

Local vorticity square V_i^2 (d) Dominant $\tilde{\lambda}_i$ (blue).

(e,f) Principle components evolve in smooth crossover.

Vortex binding-unbinding may be challenging for machine learning.

3. Quantum Models of Magnetism

Methodology is determinant Quantum Monte Carlo (DQMC). Electron-electron interactions decoupled via introduction of

discrete 'Hubbard-Stratonovich' field $S_{i\tau}$.

 $S_{i\tau}$ has spatial $i = 1, 2, \dots N$; imaginary time $\tau = 1, 2, \dots L$ indices.

 $L = \beta / \Delta \tau$: number of divisions of inverse temperature.

Options for PCA:

- Provide $S_{i\tau}$ for all *i* at single τ , or all τ at single *i*.
- Provide $S_{i\tau}$ for all i, τ .
- Provide (vorticity in XY), a 'derived quantity': e.g. Greens function.

Prior work (very partial list!):

Xiao Yan Xu, Yang Qi, Junwei Liu, Liang Fu, Zi Yang Meng, arXiv:1612.03804. K. Ch'ng, J. Carrasquilla, R.G. Melko, and E. Khatami, arXiv:1609.02552v2.

P. Broecker, J. Carrasquilla, R.G. Melko, and S. Trebst, arXiv:1608.0784v1.

(Q-i) Hubbard Model on honeycomb lattice.

$$\hat{H} = -t \sum_{\langle ij \rangle \sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Honeycomb lattice, half-filling: AF order if $U > U_c \sim 3.8$.

(Q-i) Hubbard Model on honeycomb lattice.

$$\hat{H} = -t \sum_{\langle ij \rangle \sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Honeycomb lattice, half-filling: AF order if $U > U_c \sim 3.8$.

(Q-i) Hubbard Model on Honeycomb lattice.

$$\hat{H} = -t \sum_{\langle ij \rangle \sigma} \left(c_{i\sigma}^{\dagger} c_{j\sigma} + c_{j\sigma}^{\dagger} c_{i\sigma} \right) + U \sum_{i} n_{i\uparrow} n_{i\downarrow}$$

Honeycomb lattice, half-filling: AF order if $U > U_c \sim 3.8$.

(a) Dominant variance $\tilde{\lambda}_i$ (b) Central $(\mathcal{P}_1, \mathcal{P}_2)$ peak bifurcates as U increases.

(c) Principal componentAF pattern.

(Q-ii) Periodic Anderson Model

$$\hat{H} = -t \sum_{\langle ij \rangle \sigma} \left(d_{i\sigma}^{\dagger} d_{j\sigma} + d_{j\sigma}^{\dagger} d_{i\sigma} \right) + U^{f} \sum_{i} n_{i\uparrow}^{f} n_{i\downarrow}^{f} + V \sum_{i\sigma} \left(f_{i\sigma}^{\dagger} d_{i\sigma} + d_{i\sigma}^{\dagger} f_{i\sigma} \right)$$

Antiferromagnetic \rightarrow singlet transition, $V > V_c \sim 1.18$ for $U^f = 6$.

0-16

(Q-ii) Periodic Anderson Model $\hat{H} = -t \sum_{\langle ij \rangle \sigma} \left(d^{\dagger}_{i\sigma} d_{j\sigma} + d^{\dagger}_{j\sigma} d_{i\sigma} \right) + U^{f} \sum_{i} n^{f}_{i\uparrow} n^{f}_{i\downarrow} + V \sum_{i\sigma} \left(f^{\dagger}_{i\sigma} d_{i\sigma} + d^{\dagger}_{i\sigma} f_{i\sigma} \right)$ Antiferromagnetic \rightarrow singlet transition, $V > V_{c} \sim 0.99$ for $U^{f} = 4$.

(a) Dominant variance λ_i (b) Central $(\mathcal{P}_1, \mathcal{P}_2)$ peak

collapses as V increases.

(c) Principal componentAF pattern.

(Q-iii) Hubbard Model on Lieb Lattice

Three bands: two dispersing, bracket flat band. Ferrimagnetic order at half-filling.

(Q-iii) Hubbard Model on Lieb Lattice

Three bands: two dispersing, bracket flat band. Half-filling of lowest band ($\rho = 1/3$) AF order.

(a) Dominant variance λ_i
(b,d) Central (P₁, P₂) peak
(c) expanded ρ ~ 1/3.
(e) P₁ peak at ρ = 1/3.
(f) AF pattern (bridge sites).
PCA for doped system
(weak sign problem).

(Q-v) Holstein model: e^- coupled to phonons: $S_{i\tau} \to x_{i\tau}$. $\hat{H} = -t \sum_{\langle ij \rangle \sigma} \left(c^{\dagger}_{i\sigma} c_{j\sigma} + c^{\dagger}_{j\sigma} c_{i\sigma} \right) + \frac{1}{2} \sum_{i} \left(p_i^2 + \omega^2 x_i^2 \right) + g \sum_{i} x_i \left(a^{\dagger}_i + a_i \right)$

Half-filling: Simultaneous CDW and SC order at T = 0.

- Doped: SC transition of KT type (these results). $\beta_c \sim 8$.
- (a) Dominant variance $\tilde{\lambda}_i$
- (b) $(\mathcal{P}_1, \mathcal{P}_2)$ divides at low T.
- (c) \mathcal{P}_1 order onset $\beta \sim 6$.
- (d) Remnant CDW order.

4. Conclusions

Primitive machine learning method (PCA) can discern phase transitions.

Ising and Blume-Capel

- Dominant principle component \leftrightarrow order parameter;
- Recognizes symmetry breaking; first vs second order transitions.
- Sub-dominant principle components: small q behavior (domain walls).

Triangular lattice Ising, Biquadratic Spin, XY

- PCA on frustrated models (highly degenerate ground states);
- Bring out subtle incipient order.
- Cannot recognize order in $S_i^2(V_i^2)$ from only $S_i(V_i)$.

PCA is useful for discerning quantum magnetism and charge order.

Can machine learning methods beat 'traditional' approaches ?!