KITS, 2017

Spinon walk in quantum spin ice

Yuan Wan, Juan Carrasquilla, Roger Melko Phys. Rev. Lett. 116, 167202 (2016)

PI -> D wave

UW,PI

Spin ice

Ivan Ryzhkin, JETP 2005. C. Castelnovo, R. Moessner, & S. Sondhi, Nature 2008.

Quantum spin ice

- Substantial quantum fluctuations.
- Quantum tunneling of magnetic charges.
- Spinons are responsible for many physical properties of QSI. But how does the spinon move?

QSI Survey: M. Gingras and P. McClarty, Rep. Prog. Phys. 2014.

A measure of monopole inertia in the quantum spin ice $Yb_2Ti_2O_7$

LiDong Pan¹, N. J. Laurita¹, Kate A. Ross^{1,2}, Bruce D. Gaulin^{3,4,5} and N. P. Armitage^{1*}

ARTICLE

Received 26 May 2015 | Accepted 22 Jan 2016 | Published 25 Feb 2016

DOI: 10.1038/ncomms10807

OPEN

Possible observation of highly itinerant quantum magnetic monopoles in the frustrated pyrochlore Yb₂Ti₂O₇

Y. Tokiwa^{1,2,*}, T. Yamashita^{1,*}, M. Udagawa³, S. Kittaka⁴, T. Sakakibara⁴, D. Terazawa¹, Y. Shimoyama¹, T. Terashima², Y. Yasui⁵, T. Shibauchi⁶ & Y. Matsuda¹

Single-spinon dynamics

$$H = -\sum_{\langle ij\rangle} (|\bigoplus_{i} \leftarrow \bigcup_{j}^{\cdot}\rangle\langle \bigcup_{i} \rightarrow \bigoplus_{j} + |\bigoplus_{i} \rightarrow \bigcup_{j}^{\cdot}\rangle\langle \bigcup_{i} \leftarrow \bigoplus_{j}^{\cdot})$$

M. Chen, L. Onsager, J. Bonner, and J. Nagle, JCP, 1974. O. Petrova, R. Moessner, S. Sondhi, PRB, 2015.

Spinon walks on a tree

M. Chen, L. Onsager, J. Bonner, and J. Nagle, JCP, 1974. O. Petrova, R. Moessner and S. L. Sondhi, PRB, 2015.

Spinon walks in a tree

Spinon walks in a tree

Spinon walks in a tree

A chicken and egg problem

- Background spins guide spinon motion.
- Lattice contains loops.
- New spin background each time spinon revisits a site.

Characterizing single-spinon dynamics

$$C_{ij}(t) = \frac{\langle \mathbf{G.S.} | e^{i\hat{H}t} \hat{n}_j e^{-i\hat{H}t} \hat{n}_i | \mathbf{G.S.} \rangle}{\langle \mathbf{G.S.} | \hat{n}_i | \mathbf{G.S.} \rangle} \stackrel{it \to \tau}{\Rightarrow} C_{ij}(\tau) = \frac{\langle \mathbf{G.S.} | e^{\hat{H}\tau} \hat{n}_j e^{-\hat{H}\tau} \hat{n}_i | \mathbf{G.S.} \rangle}{\langle \mathbf{G.S.} | \hat{n}_i | \mathbf{G.S.} \rangle}$$

 $C_{ij}(t)$

Probability of observing the spinon on site j at time t provided it was observed on i at time 0.

Spinon path integral

$$C_{ij}(\tau) \propto \frac{1}{\sum_{\alpha} 1} \sum_{\alpha} \sum_{\gamma:(i,0)\to(j,\tau)} (\delta\tau)^{L_{\gamma}} (\delta\tau)^{L_{\gamma}}$$

 γ : All paths that are allowed by initial spin config. α .

Trace out spins, acquire memory

$$C_{ij}(\tau) \propto \frac{1}{\sum_{\alpha} 1} \sum_{\alpha} \sum_{\gamma:(i,0)\to(j,\tau)} (\delta\tau)^{L_{\gamma}} = \sum_{\gamma:(i,0)\to(j,\tau)} W_{\gamma}(\delta\tau)^{L_{\gamma}}$$

 $W(\gamma) = \frac{\text{Number of initial spin states for which } \gamma \text{ is feasible}}{\text{Number of all initial spin states}}$ $= e^{\text{Entropy cost of } \gamma}.$

Spinon likes retracing its steps.

Mean Displacement Squared

Compare : $C_{\mathbf{q}}(\omega) \propto \delta(\omega - E_{\mathbf{q}} + E_{\mathbf{q}=0})$

Outlook

- Spinon dynamics is (infinitely) strong-coupled at lattice scale.
- Spinon behaves as a nearly-free, massive particle at low energy.
- Incoherent spin background?